The Large-Scale Thermal Stiffening of Graphene Ribbons
202/204 Physics
We use molecular dynamics to study the vibration of a thermally fluctuating 2D elastic membrane clamped at both ends. We identify the eigenmodes from peaks in the frequency domain of the time-dependent height and track the dependence of the eigen-frequency of a given mode on the bending rigidity of the membrane. We find that the effective bending rigidity tends to a constant as the bare bending rigidity vanishes, supporting theoretical arguments that the macroscopic bending rigidity of the membrane as a whole arises from a strong renormalization of the microscopic bending rigidity. Experimental realizations include two-dimensional atomically thin membranes such as graphene and molybdenum disulfide or polymerized membrane ribbons.
Duanduan Wan Syracuse University
Host: Mark Bowick | Contact: Yudaisy Salomon Sargenton, yssargen@syr.edu